Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

*1(s(x), s(y)) → +1(*(x, y), +(x, y))
PROD(app(l1, l2)) → PROD(l1)
PROD(cons(x, l)) → PROD(l)
SUM(app(l1, l2)) → SUM(l1)
+1(+(x, y), z) → +1(y, z)
SUM(cons(x, l)) → +1(x, sum(l))
SUM(app(l1, l2)) → SUM(l2)
APP(cons(x, l1), l2) → APP(l1, l2)
PROD(app(l1, l2)) → *1(prod(l1), prod(l2))
*1(*(x, y), z) → *1(y, z)
+1(+(x, y), z) → +1(x, +(y, z))
SUM(cons(x, l)) → SUM(l)
SUM(app(l1, l2)) → +1(sum(l1), sum(l2))
*1(*(x, y), z) → *1(x, *(y, z))
PROD(app(l1, l2)) → PROD(l2)
PROD(cons(x, l)) → *1(x, prod(l))
*1(s(x), s(y)) → +1(x, y)
+1(s(x), s(y)) → +1(x, y)
*1(s(x), s(y)) → *1(x, y)

The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

*1(s(x), s(y)) → +1(*(x, y), +(x, y))
PROD(app(l1, l2)) → PROD(l1)
PROD(cons(x, l)) → PROD(l)
SUM(app(l1, l2)) → SUM(l1)
+1(+(x, y), z) → +1(y, z)
SUM(cons(x, l)) → +1(x, sum(l))
SUM(app(l1, l2)) → SUM(l2)
APP(cons(x, l1), l2) → APP(l1, l2)
PROD(app(l1, l2)) → *1(prod(l1), prod(l2))
*1(*(x, y), z) → *1(y, z)
+1(+(x, y), z) → +1(x, +(y, z))
SUM(cons(x, l)) → SUM(l)
SUM(app(l1, l2)) → +1(sum(l1), sum(l2))
*1(*(x, y), z) → *1(x, *(y, z))
PROD(app(l1, l2)) → PROD(l2)
PROD(cons(x, l)) → *1(x, prod(l))
*1(s(x), s(y)) → +1(x, y)
+1(s(x), s(y)) → +1(x, y)
*1(s(x), s(y)) → *1(x, y)

The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 5 SCCs with 6 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(cons(x, l1), l2) → APP(l1, l2)

The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


APP(cons(x, l1), l2) → APP(l1, l2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(APP(x1, x2)) = (4)x_1   
POL(cons(x1, x2)) = 1 + (4)x_2   
The value of delta used in the strict ordering is 4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

+1(+(x, y), z) → +1(y, z)
+1(+(x, y), z) → +1(x, +(y, z))
+1(s(x), s(y)) → +1(x, y)

The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


+1(+(x, y), z) → +1(y, z)
+1(+(x, y), z) → +1(x, +(y, z))
+1(s(x), s(y)) → +1(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(s(x1)) = 4 + (3)x_1   
POL(0) = 0   
POL(+1(x1, x2)) = (7/4)x_1   
POL(+(x1, x2)) = 11/4 + (4)x_1 + (3)x_2   
The value of delta used in the strict ordering is 77/16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SUM(app(l1, l2)) → SUM(l1)
SUM(app(l1, l2)) → SUM(l2)
SUM(cons(x, l)) → SUM(l)

The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


SUM(app(l1, l2)) → SUM(l1)
SUM(app(l1, l2)) → SUM(l2)
SUM(cons(x, l)) → SUM(l)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(cons(x1, x2)) = 4 + (4)x_2   
POL(SUM(x1)) = (4)x_1   
POL(app(x1, x2)) = 4 + (4)x_1 + (4)x_2   
The value of delta used in the strict ordering is 16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

*1(*(x, y), z) → *1(y, z)
*1(*(x, y), z) → *1(x, *(y, z))
*1(s(x), s(y)) → *1(x, y)

The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


*1(s(x), s(y)) → *1(x, y)
The remaining pairs can at least be oriented weakly.

*1(*(x, y), z) → *1(y, z)
*1(*(x, y), z) → *1(x, *(y, z))
Used ordering: Polynomial interpretation [25,35]:

POL(*1(x1, x2)) = (4)x_1   
POL(*(x1, x2)) = (2)x_1 + x_2   
POL(s(x1)) = 1/2 + (4)x_1   
POL(0) = 1   
POL(+(x1, x2)) = 0   
The value of delta used in the strict ordering is 2.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

*1(*(x, y), z) → *1(y, z)
*1(*(x, y), z) → *1(x, *(y, z))

The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


*1(*(x, y), z) → *1(y, z)
*1(*(x, y), z) → *1(x, *(y, z))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(*1(x1, x2)) = (9/4)x_1   
POL(*(x1, x2)) = 3/4 + (9/4)x_1 + (2)x_2   
POL(s(x1)) = 2   
POL(0) = 0   
POL(+(x1, x2)) = 11/4 + (1/4)x_2   
The value of delta used in the strict ordering is 27/16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

PROD(cons(x, l)) → PROD(l)
PROD(app(l1, l2)) → PROD(l1)
PROD(app(l1, l2)) → PROD(l2)

The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


PROD(cons(x, l)) → PROD(l)
PROD(app(l1, l2)) → PROD(l1)
PROD(app(l1, l2)) → PROD(l2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(cons(x1, x2)) = 4 + (4)x_2   
POL(PROD(x1)) = (4)x_1   
POL(app(x1, x2)) = 4 + (4)x_1 + (4)x_2   
The value of delta used in the strict ordering is 16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.